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Abstract. In a recent paper [B.K. Patra, V.J. Menon, Eur. Phys. J. C 44, 567 (2005)] we developed a very
general formulation to take into account explicitly the effects of the hydrodynamic flow profile on the gluonic
breakup of J/ψs produced in an equilibrating quark–gluon plasma. Here we apply that formulation to the
case when the medium is undergoing a cylindrically symmetric transverse expansion starting from RHIC or
LHC initial conditions. Our algebraic and numerical estimates demonstrate that the transverse expansion
causes enhancement of the local gluon number density ng , affects the pT-dependence of the average disso-
ciation rate 〈Γ̃ 〉 through a partial-wave interference mechanism and makes the survival probability S(pT)
to change with pT very slowly. Compared to the previous case of a longitudinal expansion the new graph
of S(pT) is pushed up at LHC but develops a rich structure at RHIC, due to a competition between the
transverse catch-up time and the plasma lifetime.

PACS. 12.38.Mh

1 Introduction

It is a well-recognized fact that a hydrodynamic expan-
sion can significantly influence the internal dynamics of,
and signals coming from, the parton plasma produced in
relativistic heavy-ion collisions. The scenario of J/ψ sup-
pression due to gluonic bombardment [1–8] now becomes
very nontrivial because of two reasons:

i) the flow causes inhomogeneities with respect to the
time-space location x and

ii) careful Lorentz transformations must be carried out
among the rest frames of the fireball, the medium, and
the ψ meson.

In a recent paper [1] this nontrivial problem was formally
solved by first assuming a general flow velocity profile v(x)
and thereafter deriving new statistical mechanical expres-
sions for the gluon number density ng(x), the average dis-
sociation rate 〈Γ̃ (x)〉, and the ψmeson survival probability
S(pT) at transverse momentum pT (assuming the meson’s

velocity vψ to be along the lateral X direction in the fire-
ball frame).
This general theory was also applied numerically in [1]

to a plasma undergoing a pure longitudinal expansion par-
allel to the collision axis. In such a case the kinematics is
simple because v ·vψ = 0 and also the cooling is known [9]
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to occur slowly. When a comparison was made with the
no-flow situation [8] we found that ng(x) was enhanced,
a partial-wave interference mechanism operated in 〈Γ̃ (x)〉,
and the graph of S(pT) was pushed down/up depending on
the LHC/RHIC initial conditions.
The aim of the present paper is to address the follow-

ing important question [9]: What will happen if the general
theory of [1] is applied to the case of cylindrically symmet-
ric, pure transverse expansion involving tougher kinemat-
ics (because v ·vψ �= 0) as well as a higher cooling rate?
In Sect. 2 below we derive the relevant formulae for statis-
tical observables (viz. ng, 〈Γ̃ 〉, S(pT), etc.) paying careful
attention to the ψmeson trajectory and the so called catch-
up time. Next, Sect. 3 presents our detailed numerical work
along with interpretations concerning 〈Γ̃ 〉 and S(pT). Fi-
nally, our main conclusions are summarized in Sect. 4.

2 Statistical observables

2.1 Hydrodynamic aspects

We assume local thermal equilibrium and set up a cylindri-
cal coordinate system in the fireball frame appropriate to a
central collision. Let x= (r, φ, z) be a typical spatial point,
xµ = (t,x) a time-space point, v the fluid three velocity,

γ =
(
1− v2

)−1/2
the Lorentz factor, τ the proper time,

uµ = (γ, γv) the four velocity, P the comoving pressure,
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ε the comoving energy density, T the temperature, and
T µν = (ε+P )uµuν−Pgµν the energy-momentum tensor.
Then the expansion of the system is described by the equa-
tion for conservation of energy and momentum of an ideal
fluid:

∂µT
µν = 0 , (1)

in conjunction with the equation of state for a partially
equilibrated plasma of massless particles:

ε= 3P =
[
a2λg + b2(λq +λq̄)

]
T 4 , (2)

where a2 = 8π
2/15, b2 = 7π

2Nf/40, and Nf ≈ 2.5 is the
number of dynamical quark flavors, λg is the gluon fugac-
ity, and λq̄ (λq ) is the (anti-) quark fugacity. Of course, the
gluons (or quarks) obey Bose–Einstein (or Fermi–Dirac)
statistics having fugacities λg (or λq ) at temperature T .
The number densities of massless quarks and gluons are

known to be proportional to T 3 where T is the local tem-
perature as a function of the medium’s proper time τ . As
the plasma expands in the fireball frame, cooling occurs,
i.e., T decreases with the clock time t at every spatial loca-
tion x. The law of decrease of T is like τ−1/3 for a pure lon-
gitudinal flow (as predicted by Bjorken’s boost-invariant
theory) but is more rapid for a pure transverse flow (as
shown by numerical computations). Therefore, expansion
necessarily causes a dilution of the system’s density as the
time progresses.
Under transverse expansion the fugacities and tem-

perature evolve with the proper time according to the mas-
ter rate equations [10–12]

γ

λg
∂tλg+

γv

λg
∂rλg+

1

T 3
∂t(γT

3)+
v

T 3
∂r(γT

3)

+γ∂rv+γ

(
v

r
+
1

t

)

=R3(1−λg)−2R2

(
1−
λqλq̄

λ2g

)
, (3)

γ

λq
∂tλq+

γv

λq
∂rλq+

1

T 3
∂t(γT

3)+
v

T 3
∂r(γT

3)

+γ∂rv+γ

(
v

r
+
1

t

)

=R2
a1

b1

(
λg

λq
−
λq̄

λg

)
, (4)

Table 1. Colliding nuclei, collision energy, and initial parameters for the QGP at RHIC(1),
LHC(1) [13]

Nuclei Energy
√
s ti Ti λgi λqi Ri

(GeV/nucleon) (fm/c) (GeV) (fm)

RHIC(1) 197Au 200 0.7 0.55 0.05 0.008 6.98

LHC(1) 208Pb 5000 0.5 0.82 0.124 0.02 7.01

where v is the transverse velocity, and the remaining sym-
bols are defined by

R2 = 0.5ng〈vrelσgg−→qq̄〉, R3 = 0.5ng〈vrelσgg−→ggq〉 .
(5)

For our phenomenological purposes it will suffice to assume
that, at a general instant t in the fireball frame, the plasma
is contained in a uniformly expanding cylinder of radius

R=Ri+(t− ti) ve , (6)

where Ri was the radius at the initial instant ti and the ex-
pansion speed ve is a free parameter (0 ≤ ve < 1). In the
absence of azimuthal rotations the transverse velocity pro-
file of the medium can be parametrized by a linear ansatz:

v= ve r/R, 0≤ r ≤R . (7)

Clearly, |v| vanishes at the origin but becomes ve at the
edge. The (chemical) master equations (3)–(4) are de-
signed to be solved numerically on a computer subject to
the RHIC/LHC initial conditions stated in Table 1.
The lifetime or freeze-out time tlife of the plasma is the

instant when the temperature at the edge falls to T (tlife) =
0.2GeV, say.

2.2 Gluon number density

For an arbitrary flow profile v, momentum integration [1,
Eq. 11] over a Bose–Einstein distribution function yields
the evolving gluon number density

ng(x) =
16

π2
γ T 3

∞∑

n=1

λng

n3
. (8)

It may appear to be counterintuitive that the density of
gluons should increase in the expansion; however, a simple
physical explanation is offered by the concept of length (or
volume) contraction in Lorentz transformations. Suppose
a given number N0g of gluons are present in a small volume
V 0g which is locally at rest with respect to the plasma; the
corresponding density n0g = N

0
g /V

0
g may be called proper.

Upon making a Lorentz boost with velocity −v the new
observer (in the fireball frame) sees the same number of
gluons within a contracted volume Vg = V

0
g /γ; the cor-

responding density ng =N
0
g /Vg = n

0
gγ therefore becomes

enhanced in (8).
Of course, the issue of a volume contraction between

two frames is based on the hypothesis of temporal simul-
taneity in each, and this issue is quite different from the
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question of the time-evolution of the gluon number dens-
ity in a given frame. Indeed, at a specified location x in
the fireball frame our ng will steadily decrease with time as
the expansion (i.e. cooling) proceeds due to the T 3 factor
in (8).
Since this expression does not depend on the angles of

v it has the same structure both for the longitudinal and
transverse cases. Also, the flow enhances the number dens-
ity compared to the no-flow case [8]; e.g. at fixed λg the
enhancement factor γ becomes 2.3 if |v| = 0.9c.

2.3 Average ψ dissociation rate

In the fireball frame (keeping the flow profile still gen-
eral) we consider a ψ meson of mass mψ, four momen-
tum pµψ, three velocity vψ = pψ/p

0
ψ, and Lorentz factor

γψ = p
0
ψ/mψ. If w

µ is the plasma four velocity measured in
the rest frame of ψ then we can define the useful kinematic
symbols [1, Eq. 30]

F = v · v̂ψ, Y = γψ|vψ|− (γψ−1)F,

w0 = γγψ (1−F |vψ|) , w = γ (v−Y v̂ψ) ,

cos θψw = ŵ · v̂ψ = γ (F −Y ) /|w| , (9)

where the hats stand for unit vectors. Now, let qµ be the
gluon four momentum seen in the ψ meson rest frame, εψ
the cc̄ binding energy,Q0 = q0/εψ a dimensionless variable,

and σRest(Q
0) ∝

(
Q0−1

)3/2
/Q0

5
the g–ψ breakup cross

section according to QCD [14]. Then the mean dissocia-
tion rate due to hard thermal gluons [1, Eq. 32] is given
by

〈Γ̃ (x)〉 =
8ε3ψγψ

π2

∞∑

n=1

λng

∫ ∞

1

dQ0Q0
2
σRest(Q

0)e−CnQ
0

× [I0(ρn)+ I1(ρn)|vψ| cos θψw] , (10)

where we have used the abbreviations

Cn = nεψw
0/T, Dn = nεψ|w|/T,

ρn =DnQ
0, I0(ρn) = sinh(ρn)/ρn,

I1(ρn) = cosh(ρn)/ρn− sinh(ρn)/ρ
2
n. . (11)

Equation (10) demonstrates how 〈Γ̃ (x)〉 depends on the
hydrodynamic flow through wµ as well as the angle θψw.
Retaining only the n= 1 term and picking up the dominant
peak contribution from Q0p = 10/7 we arrive at the useful
approximation

〈Γ̃ (x)〉 ∝ λgγψH,

H ≡ e−C1Q
0
p
[
I0(D1Q

0
p)+ I1(D1Q

0
p) | vψ | cos θψw

]
,

(12)

in which a partial-wave interference mechanism operates
due to the anisotropic cos θψω factor. Numerical conse-
quences of (10) relevant to transverse flow will be discussed
later in Sect. 3.1.

2.4 J/ψ survival probability

In this section we shall consider pure transverse flow
parametrized by (7) and the ψ meson moving in the lateral
X direction with velocity vψ = (vT, 0, 0) appropriate to the
mid-rapidity region in the fireball frame. Suppressing the
z coordinate the production configuration of the ψ meson

is called
(
tI, r

I
ψ

)
≡
(
tI, r

I
ψ, φ

I
ψ

)
and the general trajectory

after time duration ∆ is termed (t, rψ) ≡
(
t, rψ, φ

I
ψ

)
such

that

tI = ti+γψτF, ∆= t− tI

rψ = r
I
ψ+vψ∆, (13)

where τF ≈ 0.89 fm/c is the proper formation time [15] of
the cc̄ bound state. This transverse trajectory will hit
the edge R ≡ RI+ ve∆ of the radially expanding cylinder

(cf. (6)) at the catch-up instant t∗ after duration ∆∗ such
that

|RI+ ve∆
∗ |2 = | rIψ+vψ∆

∗ |
2
,

so α∆∗2+2β∆∗−µ= 0,

with α= v2ψ− v
2
e , µ=R2I − r

I
ψ

2
,

β = rIψvψ cosφ
I
ψ−RIve . (14)

If the quadratic equation in ∆∗ has real roots we pick up
the one which is positive and smaller; but if both roots are
imaginary then a catch-up cannot occur. The time interval
of physical interest becomes

tI ≤ t≤ tII , tII =min (tI+∆
∗, tlife) . (15)

This formula is quite different from that derived in the case
of longitudinal flow [1, Eq. 48]. As the time t progresses the
dissociation rate (10) must be evaluated on the ψ meson
trajectory itself, implying that we have to set at a general
instant

r= rψ, v= verψ/R,

F ≡ v · v̂ψ =
(ve
R

) (
rIψ cosφ

I
ψ+ vψ∆

)
(16)

in the kinematic relations (9). Clearly, the notation 〈Γ̃ 〉
of (10) becomes equivalent to

〈Γ̃ [t]〉 ≡ 〈Γ̃ (t, pT, r
I
ψ, φ

I
ψ)〉, (17)

depending parametrically on the production configuration
rIψ, φ

I
ψ. Then, by using the radioactive decay law without

recombination and averaging over the cross sectional area
AI = πR

2
I (at the production instant) we arrive at the de-

sired survival probability:

S(pT) =

∫

AI

d2rIψ

(
R2I − r

I
ψ

2
)
e−W

/∫

AI

d2rIψ

(
R2I − r

I
ψ

2
)
,

W =

∫ tII

tI

dt Γ̃ [t] , d2rIψ = dr
I
ψr
I
ψdφ

I
ψ . (18)
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To appreciate more fully the physics of (13)–(18) it is con-
venient to recapitulate briefly how J/Ψ production is mod-
eled in the standard literature. In ultrarelativistic heavy
ion collisions the gluonic content of the individual nucleon–
nucleon interactions can create heavy quark–antiquark fla-
vors over the very short time scale∼ 1/2mc ∼ 10−24 s, with
mc being the mass of the charm quark. The cc̄ pair travers-
ing the deconfined medium develops into the physical Ψ
resonance after a formation time. Although the transverse
momentum pψ of the meson is selected experimentally, its
transverse location rIψ at the instant of creation remains

a random variable with a chance distribution Π(rIψ), say.
Assuming that the creation rate of J/Ψ is proportional
to the number of participant NN interactions at impact
parameter rIψ one finds Π(r

I
ψ) ∝ (R

2
I − r

I
ψ

2
) which enters

the basic formula (18). Clearly the distribution Π(rIψ) is

nonuniform, because it is maximum at rIψ = 0 but vanishes
at rIψ =RI.
Here no information is needed about the length LI of

the cylindrical plasma in contrast to the case of longitudi-
nal flow [1, Eq. 52] where the averaging had to be done over
the volume VI = πR

2
ILI.

3 Numerical results

3.1 Curves of dissociation rate

The exact formula (10) of 〈Γ̃ 〉 is a very complicated func-
tion of t as well as of several kinematic parameters defined
jointly by (9), (11) and (16), but a feeling for its behavior
can be obtained in the extreme nonrelativistic (|v|/c→ 0)
and ultrarelativistic (|v|/c→ 1) limits. For simplicity, sup-
pose at the instant tI a special ψ was formed almost at the

edgeRI of the cylinder with φ
I
ψ being the angle between the

ψ position vector and the velocity vector. Then the kine-
matic relations (16) and (9) yield

v= ver̂
I
ψ =±vev̂ψ, F = ve cosφ

I
ψ =±ve,

w = γ (v−Y v̂ψ) = γe (±ve−Y ) v̂ψ , (19)

where the +, − signs correspond to cosφIψ = ±1, i.e., to
φIψ = 0, π, respectively. Thus we have the parallel or anti-
parallel property

w ‖ v̂ψ, cosφψw =+1 if φ
I
ψ = 0 and Y < ve,

w ‖ −v̂ψ, cosφψw =−1 if φ
±
ψ = π or Y > ve . (20)

Results for intermediate values of φψw will not be reported
here. Figures 1–4 depict the corresponding exact curves of
〈Γ̃ 〉 computed from (10) based on the LHC initial condi-
tions of Table 1 We now proceed to interpret these graphs
using the approximate estimate (12).

Interpretation

i) At fixed (pT, φ
I
ψ, ve) the steady increase of 〈Γ̃ 〉 with

T in Figs. 1–2 is caused by the growing exp{−(C1∓
D1)Q

0
p} factors occurring in the estimate (12).

ii) At fixed value of (T, φIψ, ve = 0.2) corresponding to

a nonrelativistic flow the variation of 〈Γ̃ 〉 with pT
in Fig. 3a and b is more intricate. At φIψ = 0 in Fig. 3a

there is a broad enhancement of 〈Γ̃ 〉 for low pT ≤
1 GeV; this is because, firstly, low speeds of the ψ and
plasma can compete, and, secondly, constructive inter-
ference occurs between I0 and I1 in the estimate (12)
for cos θψw =+1 (cf. (20)). On the other hand, at φ

I
ψ =

π in Fig. 3b our 〈Γ̃ 〉 decreases monotonically with pT
throughout; this is due to the fact that, since cos θψw =
−1 now (cf. (20)), the interference between I0 and I1
becomes destructive.

iii) At fixed values of (T, φIψ, ve = 0.9) corresponding to
an ultrarelativistic flow similar trends with respect to
pT are again explained in Fig. 4a and b, except for the
fact that the steady rise of 〈Γ̃ 〉 with pT in Fig. 4a is
caused mainly by the γψ coefficient present in the es-
timate (12).

3.2 Curves of survival probability

For a chosen creation configuration of the ψ meson the
function W was first computed from (18) and then S(pT)

was numerically evaluated. Figure 5a and b show the de-
pendence of S(pT) on pT corresponding to the LHC and

RHIC initial conditions, respectively (for two choices of
the transverse expansion speed ve). For the sake of a dir-
ect comparison, we also include our earlier results based
on no-flow [8, Eq. 25] and longitudinal expansion [1, Eq.
52] (starting from two possible lengths Li of the initial
cylinder). We now turn to a physical discussion of these
graphs.

Interpretation

In every scenario of gluonic dissociation the functionW =∫ tII
tI
dt 〈Γ̃ 〉 depends on pT via the integrand 〈Γ̃ 〉 as well

as the limits (tI, tII). Three interesting cases may now be
distinguished.

No flow case. Here [8] cooling of the plasma is simulated
through the master rate equations [10], but the existence
of the explicit flow profile is ignored. Then 〈Γ̃ 〉 decreases
monotonically with pT because of a destructive interfer-
ence between the I0 and I1 terms. Also, the time span
tII− tI is shortened as the speed of the ψ meson increases.
Consequently, the survival probability called S0(pT) grows
steadily with pT as shown by the solid lines in Fig. 5a and b.

Longitudinal expansion case. Here [1] an extra parameter
appears, namely the length Li of the initial cylinder. For
nonrelativistic flow emanating from the short length of
Li = 0.1 fm, the 〈Γ̃ 〉 values are somewhat reduced com-
pared to the no-flow case (due to I0, I1 destructive inter-
ference), though the time span tII− tI remains unaltered,
so that the survival probability, called S‖(pT), is pushed
slightly upwards in Fig. 5a and b. But for relativistic flow
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Fig. 1. The variation of the modi-
fied rate 〈Γ̃ 〉 as a function of tem-
perature at different transverse mo-
menta for the transverse flow vel-
ocity v = 0.2c for a φIψ = 0 and b

φIψ = π, respectively

Fig. 2. The variation of the modi-
fied rate 〈Γ̃ 〉 as a function of tem-
perature at different transverse mo-
menta for the transverse flow vel-
ocity v = 0.9c for a φIψ = 0 and b

φIψ = π, respectively

Fig. 3. The variation of the modi-
fied rate 〈Γ̃ 〉 as a function of trans-
verse momentum for different values
of temperatures for the transverse
flow velocity v = 0.2c for a φIψ = 0

and b φIψ = π, respectively
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Fig. 4. The variation of the modi-
fied rate 〈Γ̃ 〉 as a function of
transverse momentum at differ-
ent values of the temperature for
the transverse flow velocity v =
0.9c for a φIψ = 0 and b φ

I
ψ = π,

respectively

Fig. 5. The survival probability
of J/ψ in an equilibrating par-
ton plasma at a LHC(1) and b
RHIC(1) energies with initial con-
ditions given in Table 1. The solid
curve S0(pT) is the result of [8],
i.e., in the absence of flow, while
the dotted and dashed curves rep-
resent the S‖(pT) when the plasma
is undergoing longitudinal expan-
sion with the initial values of the
length of the cylinder Li = 0.1 fm
and 1 fm, respectively [1]. The dot-
dashed and double dot-dashed curves
depict the S⊥(pT) when the sys-
tem is undergoing a transverse ex-
pansion with the expansion speed
ve = 0.1 and 0.9, respectively

emanating from the longer length of Li = 1 fm the shifts of
the S‖(pT) curve occurs in mutually opposite directions at
LHC and RHIC (due to the different initial temperatures
generated therein [1]).

Transverse expansion case. Here the extra parameter in-
volved is the transverse expansion speed ve which together
with φIψ and T control the pT-dependence of the function

W . For φIψ = 0 the 〈Γ̃ 〉 values in Figs. 3a and 4a exhibit
an enhancement/rising trend on the lower pT side; such
ψ mesons contribute sizably to W but little to e−W . On
the other hand, all curves of 〈Γ̃ 〉 in Figs. 3 and 4 flatten
off to nearly constant values on the higher pT side; such ψ
mesons contribute substantially to e−W especially for low
temperatures. Therefore, the transverse survival probabil-
ity S⊥(pT) becomes nearly pT-independent (or very slowly
varying) in Fig. 5a and b, in sharp contrast to the longi-
tudinal case. For explaining the magnitude of the ratio
S⊥(pT)/S‖(pT) we consider the temporal scenario dealing
with the limits of the integration.

Temporal scenario. It is known that a transverse expansion
of a quark–gluon plasma produces cooling at a faster rate
compared to longitudinal expansion, so that the inequal-
ity t⊥life < t

‖
life holds on the corresponding lifetimes. At LHC

the transverse cooling is so fast that for most ψ mesons of
kinematic interest we have tII = t

⊥
life in the definition (15).

The time span tII− tI is, therefore, much smaller com-
pared to the longitudinal case implying S⊥(pT) > S‖(pT)
in Fig. 5a. Clearly this property at LHC is devoid of any
rich structure. However, at RHIC let us divide the ψ me-
son kinematic region into two parts. For slower mesons
having pT < 5 GeV the catch-up time tI+∆

∗ in (15) ex-
ceeds the lifetime so that tII = t

⊥
life again, i.e., S⊥(pT) >

S‖(pT) in Fig. 5b for pT < 5 GeV. Next, for faster mesons
having pT > 5 GeV, the reverse inequalities hold, making
S⊥(pT) < S‖(pT) in Fig. 5b. Clearly, the rich structure in

S⊥(pT) at RHIC arises from amutual competition between
the catch-up time and the lifetime.
One may still wonder what will happen in the more re-

alistic situation where the longitudinal and transverse ex-
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pansions occur simultaneously. It is difficult to give a con-
crete quantitative answer to this question due to two-fold
reasons.

i) In the cylindrical coordinates the full form of the hy-
drodynamical equation (1) and master rate equations
becomes too tedious even for a computer, and

ii) the kinematic relations (9) describing the flow in J/Ψ
rest frame also become complicated since v is a full-
fledged three vector.

Hence we content ourselves with the qualitative remark
that the realistic curves of S(pT) will presumably lie in be-
tween those for the pure longitudinal flow and pure trans-
verse flow shown in Fig. 5.

4 Conclusions

a) In this workwe have applied our general formulation [1]
of the hydrodynamic expansion to study the effect of an
explicit transverse flow profile on the gluonic breakup
of J/ψs created in an equilibrating QGP. The formal-
ism in Sect. 2 and numerical results of Sect. 3 are new
and original.

b) Equation (8) shows that, at specified fugacity λg , the
effect of the transverse flow is to increase the gluon
number density ng. This was also the case with longitu-
dinal flow.

c) Our expressions (10) and (12) of the mean dissocia-
tion rate 〈Γ̃ 〉 involves hyperbolic functions as well as a
partial-wave interference mechanism (controlled by the
anisotropic cos θψw factor). In addition, knowledge of
a nontrivial kinematic function F (cf. (16)) is needed
for interpreting the variation of 〈Γ̃ 〉 with T , pT, φIψ, ve
in Figs. 1–4. In contrast, for longitudinal flow the treat-
ment of 〈Γ̃ 〉 was easier because F = 0 there.

d) There are several features of contrast between the
transverse and longitudinal survival probabilities de-
noted by S⊥(pT) and S‖(pT), respectively. Due to the
geometry of the production configuration our S⊥(pT)
contains a double integral (18) whereas S‖(pT) con-
tains a triple integral. Next, due to the flattening-off
trend of 〈Γ̃ 〉 with increasing pT, our S⊥(pT) becomes
roughly pT-independent (or slowly varying) in Fig. 5a

and b, whereas S‖(pT) rises rapidly. Finally, the quick
cooling rate at LHC makes S⊥(pT) > S‖(pT) at all
pT of interest in Fig. 5a whereas at RHIC (in Fig. 5b)
a competition between the catch-up time and the life-
time will add to the richness of the information likely
to be available from such studies. Of course a full study
will additionally have to include the effect of the nu-
clear and the co-mover absorption, before comparing
these interesting results with the experimental data.

e) We conclude with the observation that the field of J/ψ
suppression due to gluonic breakup continues to be
a research area of great challenge. In a future communi-
cation we plan to study the effect of an asymmetric flow
profile arising from noncentral collisions of heavy ions
at finite impact parameter b.
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